Investigation into properties of starch-based nanocomposite materials for fruits and vegetables packaging - A review

Authors

  • A. Fadeyibi Department of Agricultural and Biological Engineering, Kwara State University Malete, Nigeria
  • Z. D. Osunde Department of Agricultural and Biosystems Engineering, Landmark University, Ornu-Aran, Nigeria
  • M. G. Visa Department of Agricultural and Biological Engineering, Kwara State University Malete, Nigeria
  • A. A. Okunola Department of Agricultural and Biosystems Engineering, Landmark University, Ornu-Aran, Nigeria

Keywords:

Biodegradable, starch, Nanocomposites, Fruits, Vegetables, Packaging

Abstract

The huge environmental impact associated with the use of conventional packaging materials, like polyethylene, has led to the renewed interest in alternative ways of food packaging. Recently, green polymer technology, which involves the application of renewable packaging materials made from biodegradable resources like starch, has been the subject of discussion among stakeholders in food processing and storage. This review was carried out to investigate the mechanical, thermal, barrier and structural properties of biodegradable nanocomposite packaging materials made from starch. Emphasis was given to the application of the starch-based biodegradable packaging materials in fruits and vegetables packaging. The prospect of the new materials in terms of strength, barrier to moisture and oxygen, morphology and thermal stability, with regard to the inclusion of nanoparticles, for this application was highlighted. The information provided will help address the environmental challenges often posed by the conventional materials while at the same time improve the post harvest storage stability of fruits and vegetables through packaging.

References

Ali, N., A., and Noori, F. T. M. (2014). Gas barrier properties of biodegradable polymer nanocomposites films. Chemistry and Materials Research, 6 (1), 56-64, ISSN 2225-0956

Amidi-Fazli, F., andAmidi-Fazli, N. (2015). Barrier properties of starch-ethylene vinyl alcohol nanocomposites. International Journal ofChemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 9 (2), 249-252.

Auras, R., Singh, S. P., and Singh, J. J. (2005). Evaluation of oriented (poly-lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technology and Science, 18, 207-216, doi: 10.1002/pts.692.

Badmus, A. A., Gauri, A., Ali, A. A., and Gomes, G. (2015). Mechanical stability of biobased food packaging material. Food Science and Quality Management, 39, 41-48, ISSN 2225-0557.

Chung, Y.,Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E.P. and Lai, H. (2010). Preparation and properties of biodegradable starch-clay nanocomposite. Carbohydrate Polymer, 79, 39 1-39 , doi: 10.1016/j.carbopol.2009.08.01.

Dai, L., Qui, C., Xiong, L., and Sun, Q. (2015). Characterisation of com starch-based films reinforced with taro starch nanoparticles. Food Chemistry, 174 (1), 82-88, doi: 10.1016/j.foodchem.2014.11.005.

Dang, K.M., and Yoksan, R. (2015). Development of thermoplastic starch blown by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581, doi: 10.1016/j.carbpol.2014.09.005.

Dolea, P., Jolya, C., Espucheb, E., Alricc, I., and Gontardd, N. (2004). Gas transport properties of starch based films. Carbohydrate Polymers, (58), 335-343, doi: 10.1016/.carbpol.2004.08.002.

Fadeyibi,A., Osunde, Z.D.,Agidi, G., Idah, PA., and Egwim, E.C (2016a).Development and Optimisation of Cassava Starch-Zinc-Nanocomposite Film for Potential Application in Food Packaging. J Food Process Technol 7: 591. doi:10.4172/2157-7110.1000591.

Fadeyibi, A., Z.D. Osunde, G.Agidi, and E.C. Egwim (2016b). Nano-rheological behaviour of cassava starch-zinc­ nanocomposite film under dynamic loading for high speed transportation of packaged food. In: Matheus Poletto (ed): Composite from renewable and sustainable materials. InTech Publication, Rijeka, Croatia. ISBN: 978-953-51-4956-9.

Gouldstone, A., Koh, H. J., Zeng, K. Y., Giannakopoulos, A. E., and Suresh, S. (2000). Discrete and continuous deformation during nanoindentation of thin films Acta mater, 48 (2), 2277-2295, doi: 10.1016/S1359-6454 (00)00009-4.

Hejri, Z., Ahmadpour, A., Seifkordi, A.A., and Zebarjad, S. M. (2012). Role of nano-sized TiO2 on mechanical and thermal behaviour of starch/poly (vinyl alcohol) blend films. International Journal of Nanoscience and Nanotechnology, 8 (4), 215-226.

Huang, M.F., and Yu, J.G. (2006).Structure and properties of nanocomposites and their characteristics.Journal of Applied Polymer Science, 99 (2), 170-176, doi: 1021/am506260j.

Jalalvandi, E., Majid, R.A., and Ghanbari, T. (2012). Processing, morphological, thermal and absorption behaviour of PLA/thermoplastic starch/montmorilloni te nanocomposites. World Academy of Science, Engineering and Technology, 6 (1), 12-23. Retrieved on l0thApril, 2015 from http://www.waset.org.

Jorge, M. F. G., Vanin, F. M., de Carvalho, R.A., Moraes, I. C. F., Bittante, A. M. Q. B., Nassar, S. F., and Sobral, P. J.A. (2014). Mechanical properties of gelatin nanocomposite films prepared by spreading: effect of montmorillonite concentration. Retrieved on 22nd February, 2014 from http://www.icefl1.org.

Lopez, 0. V., Castillo, L.A., Garcia, M.A., Villar, M.A., and Barbosa, S. E. (2015). Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids, 43 (1), 18-24, doi: 10.1016/j.foodhyd.2014. 04.021.

Mehyar, G. F., and Han, J. H. (2014). Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticiser. Journal of Food Science, 69 (1), 449-459, doi: 10.1111/j.1365- 2621.2004.tb09929.x.

Nascimento, T. A., Calado, V., and Carvalho, C. W. P. (2012). Development and characterisation of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International, 49, 588-595, doi: 10.1016/j. foodres.2012.07.051.

Orhan Y., Hrenovic, J., and Btiytikgtingor, H. (2004). Biodegradation of plastic compost bags under controlled soil conditions. ActaChim Slovakia, 51 (1), 579-588,doi: 10.1007/S00244-015-0192-1.

Piyada, K., Waranyau, S., and Thawein,A. (2013). Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. International Food Research Journal, 20 (1), 439-449, doi: 10.1016/j.compositesa.2010.11.004.

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R.and Sahari, J. (2015). Effect of plasticiser type and concentration on tensile,thermal and barrier properties of biodegradable films based on sugar palm (Arengapinnata) starch.Polymers, 7 (1), 1106-1124; doi: 10.3390/polym7061106.

Sheng-Rui, J., Guo-Ju, C., and Wei-Min, H. (2013). Mechanical properties of Cu2O thin Films by nanoindentation. Materials,6 (1), 4505-4513; doi:10.3390/ma6104505.

Slavutsky,A. M.,Bertuzzi,A. M.,and Armada,M. (2012). Water barrier properties of starch-clay nanocomposite films. Campinas, 15(3), 208-218, doi: 10.1590/S198167232012005000014.

Siracusaa, V., Pietro, Rocculib, Romanib, S., and Rosa, M. D. (2008). Trends in Food Science and Technology, 19 (1), 634-643.

Suppakul, P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S., and Munchukangwan, N. (2013). Empirical modelling ofmoisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticising-antiplasticisingeffects.LWT Food Science and Technology,50 (1),290-297.

Taghizadeh, M. T., and Sabouri, N. (2013).Thermal degradation behaviour of polyvinyl alcohol/starch/carboxymethyl cellulose/ clay nanocomposites. Universal Journal of Chemistry,1(2),21-29,doi: 10.13189/ujc.2013.010202.

Tall,P. D.,Ndiaye,S.,Beye,A. C.,Zong,Z.,Soboyejo,W. 0., Lee, H. J., Ramirez, A. G., and Rajan, K. (2007). Nanoindentation of Ni-Ti thin films. Materials and Manufacturing Processes,22 (1),175-179.

Tang,X.,Alavi,S.,and Herald,T. J. (2008). Effects of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydrate Polymers, Oxford, 74(3), 552 - 558, http://dx.doi.org/10.1016/j.carbpol.2008.04.022.

Zeng, Q. H., Yu,A. B., Lu (Max), G. Q, and Paul, D. R. (2005). Clay-based polymer nanocomposites: research and commercial development. Journal of Nanoscience and Nanotechnology,5 (2), 1574-1592.

Zhong, Y., and Li, Y. (2014). Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films,Starch,66 (1),524-532.

Zhou,J.,Song,X.,Fan,X.,and Hanna,M. (2007). Effect of starch structures on starch-based nanocomposite. NST I­ Nanotechnology,1 (1),11-19,ISSN: 1420061828.

Downloads

Published

2019-05-04